Environmental Product Declaration

In accordance with ISO 14025 for: Precinct Screens

Environmental Product Declaration (EPD)

in accordance with ISO 14025 EPD Registration No. S-P-04645 | Version 1.0 Issued 14/10/2021 | Valid until 14/10/2026 Zenith

Company Information

Zenith Interiors designs, manufactures, and distributes leading-edge products for corporate and commercial environments that inspire people and organisations to excel (Zenith Interiors, 2019).

Product-related or management system-related certifications:

ISO 9001 – Quality management systems ISO 14001 – Environmental Management Systems AS 4801 Health and Safety

Name and location of production site: Zenith Interiors, Melbourne, Victoria.

Precinct Screens

Precinct is a 9-30 mm soft and frameless screen solution that is highly functional and aesthetically pleasing, creating clean and defined workspaces. Available in many shapes sizes and fixings.

Product Names: Precinct Hold On, Precinct Flex, Precinct Divide, Precinct Fold Me.

UN CPC code: 3812/3813/3814 (EPD International, 2019).

Geographical scope: Final product produced in Melbourne, Victoria for the Australian market.

LCA Information

Functional unit / declared unit: One Precinct screen with length 1.8 m, depth 0.7 m, width 0.03 m.

Scope: Cradle to grave life cycle of one Precinct screen.

Reference service life: 15 years (EPD International, 2019).

Databases and LCA software used: AusLCI 2.2, ecoinvent 3.6, Industry Data 2.0 databases; SimaPro 9.1.0.11 software

Data collection period: July 2019 – February 2020

An Environmental Product Declaration, or EPD, is a standardised and verified way of quantifying the environmental impacts of a product that is based on a consistent set of rules known as Product Category Rules (PCR). EPDs within the same product category from different programs may not be comparable. This EPD is for a specific furniture product and follows the Product Category Rules 'Furniture, except seats and mattresses v2.01'.

Declaration Owner:

Zenith Interiors Web: zenithinteriors.com Email: info@zenithinteriors.com Phone: 1300 013 013

EPD produced by:

Good Environmental Choice Australia (GECA)

Web: geca.eco Email: enquiries@geca.org.au Phone: 02 9699 2850

EPD program operator:

The Australaisan EPD® Programme Ltd

Web: www.epd-australasia.com Email: info@epd-australasia.com Post: c/o Kendons Chartered Accountants PO Box 31045, Lower Hutt 5040, New Zealand

PCR Information

PCR:

Product Category Rules 'Furniture, except seats and mattresses v2.01'.

PCR review conducted by:

GECA Australia; According to product category rules (PCR): Furniture, except seats and mattresses 2012:19 VERSION 2.01 UN CPC 3812/3813/3814

Independant verification of the declaration and data, according to ISO 14025:

- EPD process certification (Internal)
- EPD verification (External)

Third party verifier

Third Party Review (by Edge Environment)

Accredited or approved by: The Australasian EPD® Programme

Product Information

The Precinct screen is used in workspaces to achieve an aesthetically pleasing and clean environment. It can be easily fitted to workstations and tables and acts as a partition.

The analysed product consists of a screen with a length of 1.8 m, depth of 0.7 m and width of 0.03 m. The materials used are sourced from different suppliers in Australia and transferred to Zenith's Melbourne factory for the manufacturing of the final product.

The final manufacturing process includes powder coating of the metals where the surfaces are first cleaned, then go through a powder coating process after which they are cured with heat. The rest of the components are assembled in the factory.

Background Data

Australian inputs were primarily modelled with the AusLCI database; the ecoinvent v3 database was used where suppliers were from overseas. All background data used was less than ten years old.

1. System Boundaries and Life Cycle Stages

Life Cycle Stages

This Environmental Product Declaration analyses the production of a Precinct screen, including the raw material extraction, the manufacture of components from suppliers, the assembly of the screen as well as the end of its service life. The different Precinct screen components are transported to Sandringham, Victoria where the screen is assembled. The product is then packed in cardboard boxes and supplied to showrooms as well as clients in Australia.

Process	Module	Description	Life cycle stages	Declared modules		
Upstream	Al	Raw materials supply	A1-A3: Manufacturing stage	Х		
process	A2	Components/raw		Х		
		materials manufacture				
Core	A3	Components transport to		Х		
process		Zenith factory				
	A4	Manufacturing of final		Х		
		products				
Downstream	B1	Transport of final product	B1: Final product transport	Х		
process	B2	Maintenance	B2-B4: Usage stage	Х		
	B3	Replacement		Х		
	B4	Operational energy use		Х		
	C1	Transport	C1-C3: End-of-life	Х		
	C2	Manual dismantling		Х		
	C3	Waste disposal		Х		
Other	D	Recycling	Other Environmental Stage	Х		
Environment						
al Stage						

Table 1: Life cycle stages of Precinct screen

System Diagram

An 'upstream – core – downstream' flow is adopted in this study. The upstream processes include the flows of raw materials. The core processes include all activities which the manufacturing organisation is in control of, i.e. transportation of the components to the manufacturing factory and the actual process of manufacturing. The downstream processes include the steps that are controlled by the user and the disposal or recycling options of the products.

Figure 1: Process diagram Precinct screen

End-of-life Scenarios

Zenith Interiors operates a take-back scheme for its furniture. Likewise, furniture owners resell or donate the furniture by themselves to extend its lifetime. In the end-of life for other environmental stages (represented as modules D), all aluminium and steel parts of the product are recycled after being manually dismantled. This is noted separately due to Polluter pays principle (PPP).

Data Quality, Temporal Scope and Geographical Scope

The modelling of Zenith products is of high quality as detailed company specific data about the product components, component suppliers, the annual energy consumption and the annual production rate was provided for this study. Data for upstream and downstream processes are retrieved from suitable averages in the AusLCI and ecoinvent databases.

The temporal scope of the study is the period for which the data was collected. The data collection process started with the visit to Zenith's Melbourne factory in July 2019. The energy consumption data taken into consideration range from September 2018 to 2019. The production volume data is for 2019. For the background data, temporal scope for AUSLCI V1.33, a shadow database of modified ecoinvent 2.2 processes is July 2020. For ecoinvent 3.6 the temporal scope is September 2019.

Materials/fue	S	Module	Data source	Geographical scope	Data quality
Raw	Fabric for logo and cover	A1, A2	Information provided	New Zealand	High quality
materials	Steel for screws		by Zenith Interiors		
supply,	MDF board				
components	Foam				
/ raw	Aluminium for zipper				
materials	Packaging of final product				
manufacture , packaging (Upstream Process)	Packaging from suppliers				
Components	Transportation of MDF	A3, A4	Information provided	New Zealand	High quality
transport to	board		by Zenith Interiors		
Zenith	Transportation of foam				
factory,	Transportation of zipper				
manufacturi	Transportation of metal				
ng of final	screw	_			
products	Transportation of fabric	_			
(Corestream	Electricity consumption	_			
Process)	Natural gas consumption				
Transportatio	Zenith Auckland factory to	B1	Assumption of	New Zealand	Medium
n of final	client		average distance of		quality
product			1,000 km according to		
(Downstrea			Product Category		
m Process			Rules		
Usage stage	Maintenance	B2	Precinct screen does	New Zealand	High quality
(Downstrea m process)			not require extra resources for		
m process)					
			maintenance apart from time-to-time		
			manual dust cleaning.		
	Replacement	B3	Not required	-	High quality
	Operational energy use	B3 B4	Not required	-	High quality
End-of-life	Transport	Cl	Assumption of	New Zealand	Medium
(Downstrea			average distance of		quality
m Process)			1,000 km		quanty
	Manual dismantling	C2	No impacts observed		Medium
			for manual		quality
			dismantling		

Table 2: Data sources, geographical scope and data quality

	Waste disposal	C3	Complete product	Medium
			along with packaging	quality
			ends up in landfill.	
Benefits from	Recycling	D	Aluminium and steel	Medium
recycling			parts are recycled.	quality
(Other life	Manual dismantling	D2	No impacts observed	Medium
cycle			for manual	quality
stages)			dismantling	

Allocations

No allocation between co-products in the core module was necessary as there were no co-products created during manufacturing.

The methodological choices for allocation for reuse, recycling and recovery have been set according to the polluter pays principle (PPP). This means that the generator of the waste shall carry the full environmental impact until the point in the product's life cycle at which the waste is transported to a scrapyard or the gate of a waste processing plant (collection site). The subsequent user of the waste shall carry the environmental impact from the processing and refinement of the waste, but not the environmental impact caused in the earlier life cycles. The cut-off system model from ecoinvent was used. Any allocations in the AusLCI unit system and Industry Data 2.0 were adopted.

Content Declaration

The major component of the Precinct screen is a medium density fibre (MDF) board. The screen is covered with a comfort foam and fabric and fixed with steel screws.

Table 3: Materials used for Precinct screen

Materials	Quantity	Unit
Fabric: polyester	0.237	kg
Steel	0.076	kg
Polyurethane foam	0.105	kg
Medium Density Fibreboard	0.129	m³
Aluminium	0.053	kg

Table 4: Energy consumption per product

Energy consumption	Quantity	Unit
Electricity	0.56	kWh
Gas usage	0.247	MJ

Environmental Performance

Environmental Impact Assessment Methods

Table 5: Overview of environmental impact assessment methods used in the study

Impact category		Unit	Assessment method			
Global	Fossil	kg CO2 eq.	Greenhouse Gas Protocol V1.02			
warming	Biogenic	kg CO2 eq.				
potential (GWP)	CO2 eq. from land transformation	kg CO2 eq.				
	Total	kg CO2 eq.				
Abiotic dep	letion	kg Sb eq.	CML-IA baseline V3.6			
Abiotic dep fuels)	letion (fossil	MJ				
Ozone laye (ODP)	r depletion	kg CFC-11 eq.				
Photochem	nical oxidation	kg C ₂ H ₄ eq.	Recipe 2008 Midpoint			
Acidificatio	n	kg SO ₂ eq.	CML-IA baseline V3.6			
Eutrophicat	tion	kg PO₄³- eq.				
Water use		m ³	AWARE VI.01			
Land use		species.yr	Recipe 2016 Endpoint V1.04			
Human toxicity, cancer		CTUh	USEtox 2			
Human toxicity, non-cancer		CTUh]			
Freshwater	ecotoxicity	CTUe				
Radioactive	e waste	kg	EDIP 2003 method			
Hazardous	waste	kg				
Non-hazara	dous waste	kg	EDIP 2003 method (Sum of Bulk waste and Slag waste)			
Primary energy resources	Use as energy carrier	MJ	Cumulative Energy Demand VI.11 method: calculated as sum of renewable – biomass, renewable – wind, solar, geothermal, and renewable – water.			
Renewabl e	Use as raw materials	MJ	Indicator not assessed (INA)			
Primary energy resources	Use as energy carrier	MJ	Cumulative Energy Demand VI.11 method: calculated as sum of non-renewable – fossil, non-renewable – nuclear, and non-renewable – biomass.			
Non-Use as raw renewabl materials e		MJ	Indicator not assessed (INA)			
Secondary material resources		kg	Indicator not assessed (INA)			
Renewable	secondary fuels	MJ	Indicator not assessed (INA)			
Non-renew fuels	able secondary	MJ	Indicator not assessed (INA)			
Net use of f	resh water	m ³	Recipe 2016 Midpoint V1.04			

Life Cycle Impacts

Table 6 shows the environmental impacts of the Precinct screen with respect to upstream, core and downstream processes, including all processes listed in Table 1. The downstream processes are divided into the two end-of-life scenarios described in chapter 7.

Table 6: Life cycle impacts – Precinct screen

Impact category		Unit	Upstream	Core	Downstream	Total	Other
			processes	processe	processes		environme
				S	with landfill		ntal stage-
							Recycling
			A1-A2	A3-A4	BI-C4		D
Global	Fossil	kg CO ₂	1.33E+01	7.78E-01	1.52E+01	2.92E+01	-1.10E+00
warming		eq.					
potential	Biogenic	kg CO ₂	-1.94E+01	1.45E-03	1.20E+01	-7.40E+00	-1.33E-03
(GWP)		eq.					
	CO2 eq. from	kg CO ₂	1.25E-03	5.27E-07	5.13E-05	1.30E-03	-4.51E-06
	land	eq.					
	transformation						
	Total	kg CO ₂	-6.10E+00	7.80E-01	2.72E+01	2.17E+01	-1.10E+00
		eq.					
Abiotic depl	etion	kg Sb	3.49E-05	6.62E-07	1.21E-05	4.76E-05	-3.46E-07
		eq.					
Abiotic depl	etion (fossil	MJ	1.61E+02	1.00E+00	2.05E+02	3.66E+02	-6.26E+00
fuels)							
Ozone layer	depletion (ODP)	kg	2.70E-07	7.06E-09	2.28E-06	2.56E-06	-2.47E-08
		CFC-11					
		eq.					
Photochemi	ical oxidation	kg	5.05E-02	1.74E-03	3.44E-01	3.96E-01	-3.29E-03
		NMVOC kg SO ₂					
Acidification	Acidification		3.51E-02	7.77E-04	7.19E-02	1.08E-01	-2.53E-03
		eq.					
Eutrophicati	on	kg	9.93E-03	2.59E-04	1.59E-02	2.61E-02	-4.91E-04
		PO4 ³⁻					
		eq.					
Water use		m ³	2.81E+02	3.21E+00	2.59E+01	3.09E+02	-2.48E+01

Table 7 below represents the resource use parameters of the Precinct screen.

Impact cate	egory	Unit	Upstream processes A1-A2	Core processes A3-A4	Downstream processes with landfill B1-C4	Total	Other environmental stage-Recycling D
Primary energy	Use as energy carrier	MJ	2.72E+02	3.80E-01	3.65E-01	2.72E+02	-6.49E-01
resources Renewabl	Use as raw materials	MJ	0	0	0	0	0
е	Total	MJ	2.72E+02	3.80E-01	3.65E-01	2.72E+02	-6.49E-01
Primary energy	Use as energy carrier	MJ	1.78E+02	1.08E+00	2.18E+02	3.96E+02	-6.66E+00
resources Non-	Use as raw materials	MJ	6.14E+00	0	0	6.14E+00	0
renewable	Total	MJ	1.78E+02	1.08E+00	2.18E+02	3.96E+02	-6.66E+00
Secondary r resources	naterial	kg	0	0	0	0	0
Renewables	Renewable secondary fuels		0	0	0	0	0
Non-renewo fuels	Non-renewable secondary fuels		0	0	0	0	0
Net use of fr	esh water	m ³	6.52E+00	7.39E-02	6.03E-01	7.19E+00	-5.76E-01

Table 7: Resource use – Precinct screen

The impacts on human toxicity cancerous, human toxicity non-cancerous, freshwater ecotoxicity and land use are given below in the Table 8.

Table 8: Other impacts - Precinct screen

Impact category	Unit	Upstrea	Core	Downstream	Total	Other
		m	processes	processes		environmental
		processe		with landfill		stage-
		s				Recycling
		A1-A2	A3-A4	B1-C4		D
Land use	species.yr	4.44E+00	1.87E-02	1.38E-01	4.07E-08	-3.29E-02
Human toxicity, cancer	CTUh	1.85E-08	2.12E-12	4.10E-10	1.88E-08	-7.03E-11
Human toxicity, non-	CTUh	4.37E-10	8.45E-13	2.16E-10	6.53E-10	-3.65E-11
cancer						
Freshwater ecotoxicity	CTUe	1.01E-01	9.13E-05	2.04E-02	1.22E-01	-7.75E-04

Table 9 below represents waste flow categories of the Precinct screen.

Table 9: Waste flow categories - Precinct screen

Impact category	Unit	Upstream	Core	Downstrea	Total	Other
		processes	processes	m		environment
				processes		al stage-
				with landfill		Recycling
		A1-A2	A3-A4	B1-C4		D
Radioactive waste	kg	3.89E-05	1.68E-08	3.16E-07	1.65E-03	-6.19E-08
Hazardous waste	kg	1.56E-03	1.75E-06	8.90E-05	8.02E+00	2.77E-05
Non-hazardous waste	kg	1.13E+00	2.24E-02	6.87E+00	3.92E-05	-1.26E-01

Table 10: Output flow categories - Precinct screen

Impact category	Unit	Upstream	Core	Downstream	Total	Other
		processes	processes	processes		environment
				with landfill		al stage-
						Recycling
		Al-A2	A3-A4	BI-C4		D
Reuse	kg	0	0	0	0	0
Materials for recycling	kg	0	0	0	0	0
Energy recovered	MJ	0	0	0	0	0
Energy exported	MJ	0	0	0	0	0
Energy exported, thermal	MJ	0	0	0	0	0

Zenithinteriors.com

Australia – Melbourne, Sydney, Canberra, Brisbane, Perth, Adelaide New Zealand – Auckland, Wellington, Christchurch Asia – Hong Kong, Shanghai, Singapore, Shenzhen